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Efficient Data Propagation in Traffic-Monitoring
Vehicular Networks

Antonios Skordylis and Niki Trigoni

Abstract—Road congestion and traffic-related pollution have a
large negative social and economic impact on several economies
worldwide. We believe that investment in the monitoring, distrib-
ution, and processing of traffic information should enable better
strategic planning and encourage better use of public transport,
both of which would help cut pollution and congestion. This paper
investigates the problem of efficiently collecting and disseminating
traffic information in an urban setting. We formulate the traffic
data acquisition problem and explore solutions in the mobile
sensor network domain while considering realistic application re-
quirements. By leveraging existing infrastructure such as traveling
vehicles in the city, we propose traffic data dissemination schemes
that operate on both the routing and the application layer; our
schemes are frugal in the use of the wireless medium, rendering
our system interoperable with the proliferation of competing ap-
plications. We introduce the following two routing algorithms for
vehicular networks that aim at minimizing communication and, at
the same time, adhering to a delay threshold set by the applica-
tion: 1) delay-bounded greedy forwarding and 2) delay-bounded
minimum-cost forwarding. We propose a framework that jointly
optimizes the two key processes associated with monitoring traffic,
i.e., data acquisition and data delivery, and provide a thorough
experimental evaluation based on realistic vehicular traces on a
real city map.

Index Terms—Ad hoc network, data muling (DM), delay-
tolerant networks, intervehicle communication, multihop (MH)
communication, routing, sensor participation, traffic monitoring,
vehicular ad hoc networks (VANETs), vehicular networks.

I. INTRODUCTION

R ESEARCHERS and automotive industries are envision-
ing the deployment of ambient traffic-monitoring appli-

cations, wherein vehicles equipped with the Global Positioning
System (GPS) detect local traffic and periodically report it to
one of the stationary roadside units dispersed throughout the
city. These units are referred to as access points (APs) and act
as gateways to the city’s traffic-monitoring center (TMC) and
the outside world.

One of the most important attributes of traffic data is fresh-
ness, i.e., the interval between the time that the data are gener-
ated by a vehicle on a particular road and the time that the data
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are made available to the user as a query response. Informally,
data freshness indicates how stale the data are and to what
extent they can be used to estimate trip times or to select the
fastest route to a destination in a reliable manner. Depending
on the expected rate of change in traffic conditions, users may
have different freshness requirements for different parts of the
city or for different times of the day. It is crucial that the
ambient traffic-monitoring application provides deterministic
guarantees that the available traffic data satisfy the specified
freshness requirements.

At the same time, the ambient traffic-monitoring application
will share bandwidth resources with various applications that
run on the same vehicular ad hoc network (VANET), e.g., appli-
cations that provide Internet access to passengers, commercial
applications that flood advertisements about nearby stores, and
safety applications that provide drivers with emergency braking
services.

Thus, our high-level goal is to design an ambient traffic-
monitoring system that minimizes bandwidth utilization while
adhering to user-defined data freshness requirements. To
achieve this goal, we investigate the following two intertwined
aspects of traffic monitoring, both of which significantly im-
pact both data freshness and bandwidth utilization: 1) data
acquisition and 2) data delivery. Our contributions are listed as
follows.

1) We formulate a novel problem in the context of ambient
traffic monitoring, i.e., minimizing the communication
cost required to monitor traffic while providing determin-
istic guarantees of data freshness.

2) We propose two novel delay-tolerant routing algorithms
for vehicular networks, i.e., delay-bounded greedy for-
warding (D-Greedy) and delay-bounded minimum-cost
forwarding (D-MinCost), which leverage locally avail-
able information about traffic and global traffic statistics
to reach forwarding strategy decisions that minimize
communication.

3) We propose a framework for vehicular networks that
jointly optimizes the two key processes associated with
monitoring traffic, i.e., data acquisition and data delivery.

4) We evaluate the benefits of our approach using realistic
traffic traces on a real city map.

The remainder of this paper is organized in six sections. In
Sections II and III, we present our assumptions and objective.
In Section IV, we discuss our traffic data acquisition algorithm,
and in Section V, we present and evaluate two novel data
delivery algorithms for vehicular networks that are suitable for
traffic information propagation. In Section VI, we present an
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in-network data reduction methodology by jointly considering
the data acquisition and data delivery phases for traffic data.
Section VII offers the concluding remarks.

II. MODEL

We assume that the network consists of vehicles that travel
in an urban environment and several stationary APs spread
across the city, which do not provide full-city coverage. APs act
as collection points for sensor readings and feed data through
a backbone connection to the TMC, where user applications
consume traffic data. We assume that they can only be installed
on road intersections. Using short- to mid-range transceivers,
vehicles can communicate with neighboring vehicles or station-
ary APs within a range of 250 m.

We assume that vehicles can obtain their absolute posi-
tion using a positioning service (e.g., GPS). Vehicles are also
equipped with a digital street map of the area. The street
map is abstracted as a directed graph G(V,E): For any two
intersections a and b, (a, b) ∈ G, if and only if there is a road
segment that connects a and b and vehicles can travel from
a toward b on that segment. We also assume that the map is
preloaded with traffic statistics about the street network, i.e.,
the average speed u and average vehicle density d at each road
segment. The map also contains the locations of the AP nodes.
In addition, we assume that, using onboard sensors (e.g., GPS
and laser), vehicles can estimate the current average speed u
and average vehicle density d on the road segment that they are
traversing.

Depending on the location where a message is generated,
it may need to be relayed multiple times through several ve-
hicles before it reaches one of the APs. When traffic density
is low or only few vehicles carry a wireless transceiver, the
vehicular network often becomes disconnected. Hence, carry-
and-forward protocols are required for the reliable delivery of
messages between vehicles in dynamically changing network
partitions. We assume that vehicles have very large buffers to
store messages before forwarding these messages. Vehicles can
either choose to continue carrying buffered messages as they
move closer to one of the APs or to forward these messages to
other vehicles in their vicinity.

III. GOALS

We envisage that a variety of applications could benefit from
traffic data that are acquired and collected by the vehicular
network. Applications could widely vary in their requirements
for data freshness; for example, an emergency response appli-
cation, e.g., an ambulance coordination service, has stringent
constraints on data freshness on the order of a few minutes.
On the other hand, a road maintenance company that works
overnight could tolerate data staleness of tens of minutes to
decide how to plan road repair work.

We aim at minimizing the bandwidth utilization of a traffic-
monitoring system while adhering to user-defined data fresh-
ness requirements. To achieve this goal, we investigate two
system aspects that significantly impact both data freshness and
bandwidth utilization: 1) data acquisition and 2) data delivery.

Fig. 1. Depending on when a user asks the TMC about traffic on a particular
road, he/she will receive results of varying freshness. The worst-case freshness
is DDD+DAP. A data acquisition period DAP can only be achieved if at least
one vehicle passes from road a every DAP time units. Similarly, a DDD can
be achieved only if there are enough vehicles in the map to enable a packet
to travel from road a to the AP in DDD time units. Details about the data
acquisition and data delivery algorithms are provided in Sections IV and V,
respectively.

Data acquisition refers to the sampling of road traffic in-
formation by passing vehicles. High sampling rates can be
achieved by having vehicles participate in the sampling process
and generate traffic information messages with high frequency.
The lower the data acquisition period (DAP) is, the fresher the
traffic data that become available for each road, but the larger
the number of traffic messages propagated through the network.

Data delivery refers to the propagation of traffic messages
from the originating vehicle to one of the APs dispersed in
the city. Traffic messages can be delivered either by wireless
multihop forwarding (MF) or by physically carrying messages
at the vehicle’s speed toward an AP. We propose hybrid algo-
rithms that carefully combine MF and data muling (DM) to
achieve a desirable delivery delay. Clearly, the lower the data
delivery delay (DDD), the fresher the traffic data available at
the APs, but the higher the use of MF, and thus, the higher the
communication cost.

Fig. 1 shows that the freshness of traffic data is directly
dependent on the DAP and DDD. Consider the example where
users wish to query the speed of vehicles on a particular
road. Let traffic messages concerning this road be generated
every DAP time units and let these messages take DDD
time units to be delivered from the source vehicles to the
AP. As shown in Fig. 1, users who query traffic information
immediately after the arrival of a traffic message get the freshest
data, whereas users who pose their queries just before the
arrival of a traffic message get the stalest data. The best case
freshness equals the DDD, whereas the worst case freshness
equals the sum of the DDD and the DAP (DDD+DAP). Data
freshness is of particular interest to users in simple yet common
traffic-monitoring systems, in which the most recent reading
about a road segment serves as an indication of the current
traffic conditions on that road segment. This condition is a
key assumption underlying this paper. In applications where
time-series analysis and prediction techniques are employed to
estimate future traffic conditions, we should also consider other
factors, e.g., the temporal granularity of recently acquired data.
In such applications, users are interested not only in getting
fresh data but in achieving a desired accuracy in the predicted
traffic values as well. In this paper, we limit our study to the
first class of applications, where users are interested in using
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the latest reports on traffic, as long as they remain sufficiently
fresh.

The question that arises is: Given a user-defined freshness
threshold F that bounds the sum of DAP and DDD, how should
we split it into DAP and DDD to minimize the total message
transmissions in the network? Should we frequently sample
traffic (select low DAP) and allow the routing algorithm to incur
a high DDD (select high DDD) or is it preferable to infrequently
generate traffic messages (select high DAP) and deliver them as
fast as possible (select low DDD)?

Our objective is to strike a good balance between the delay
budgets allocated to data acquisition and data delivery while
keeping their sum below the freshness threshold. Our approach
for achieving our objective is twofold.

1) We propose and evaluate delay-tolerant data delivery
algorithms that trade message delay for communication,
and we define a distributed data acquisition algorithm
that compensates for variable traffic conditions and node
movement.

2) We propose a framework that jointly optimizes the data
acquisition and data delivery; we investigate how their
combined operation trades data freshness for communi-
cation cost and propose a mechanism that fine-tunes their
parameters to minimize the communication incurred by
the traffic-monitoring system.

IV. DATA ACQUISITION

A. Background

A large part of the literature on sensor participation schemes
for field coverage refers to stationary sensor networks [1]–[5].
Previous work that concentrates on mobile sensors operates
on the assumption that sensor mobility can be controlled, and
therefore, sensors can be moved on demand to ensure the
coverage of the sensing field [6]. Other recent works discuss
selection schemes, where the problem is to decide which sensor
to move to compensate for node failures [7], [8]. To optimize
node selection for a particular task, most of the aforementioned
approaches present distributed algorithms that require message
exchange between the mobile nodes.

B. Algorithm

For a traffic-monitoring scheme to be successful in an urban
environment, it must ensure complete coverage of the sensing
field. In the scenario that we consider, this case translates into
providing regular traffic information updates for every road
segment in the network. If a stationary sensor network will be
used, it would suffice to position one or more traffic sensors
on each road, uniformly distributed across the road’s length,
and task them to generate traffic update messages with DAP.
In our case, however, sensor nodes are mobile, and we have no
control over their mobility. We would like to task the mobile
nodes in such a way so that at least one traffic message per road
is generated every DAP time units.

To optimize node selection for a particular task, most of the
approaches in the literature present distributed algorithms that
require message exchange between the mobile nodes, incurring

undesirable communication overhead. Because our main goal is
to reduce the communication cost associated with traffic moni-
toring, we have opted to use a probabilistic sensor participation
scheme, wherein each node independently and probabilistically
decides on whether to participate in the sensing task. Each
node participates in sensing, i.e., generates a traffic information
message, with probability Pg. The value of Pg is computed
based solely on locally available data.

We would like our mobile sensor network to provide an out-
put similar to a stationary sensor network: one traffic message
per road every DAP time units. Node mobility introduces the
following two issues that need to be addressed: 1) variable
node position and 2) variable traffic conditions. We address the
first issue by only allowing vehicles to generate messages at a
predefined fixed point on each road segment, e.g., the segment
midpoint, effectively simulating a stationary sensor mounted
on that point. To compensate for variable traffic conditions, we
carefully tune the message generation probability Pg.

Adhering to a constant DAP requires messages to be gen-
erated with frequency fg = 1/DAP . The vehicle can locally
derive its average speed u and the average vehicle density d for
the road that it traverses using onboard sensor information. We
assume that vehicles that run the traffic-monitoring application
broadcast short beacons at regular intervals (e.g., every T =
5 s) and use these beacons to discover their neighbors. A
vehicle can estimate the vehicle density around it by counting
the number of beacons received by distinct vehicles within the
communication range. We clarify that we are interested in the
density of vehicles that run the traffic-monitoring application
and thus take part in the data acquisition process and not in
the density of all vehicles on the road. Let b be the num-
ber of beacons received from distinct vehicles in the last 1s.
We assume that the vehicle has moved very little (< 11 m
if the speed is < 40 km/h) in the last 1s, and it can hear
1/T of the cars within its communication range R. Thus, an
estimate of the current density is d = (T × b)/(2 × R). The
average density d̄ is locally computed by each vehicle by
averaging density measurements over several consecutive 1-s
sliding windows. When a vehicle comes within the communi-
cation range of an AP, it offloads the density estimates made
since the last encounter with an AP. These data are further
forwarded into a centralized data base, which maintains his-
torical information about road segment densities at different
times of the day. Assuming uninterrupted flow conditions, we
can derive the average flow q of vehicles on each road as
follows: q = u · d. The desired probability is given as follows:
Pg = (fg/q) ⇒ Pg = 1/(DAP · u · d). Intuitively, the higher
the flow of vehicles over the road midpoint where sensing is
performed, the lower the value of Pg necessary to maintain a
constant sensing period DAP .

V. DATA DELIVERY

Once the traffic information message has been generated,
the underlying routing protocol will forward it to the AP. The
routing protocol is responsible not only for the message deliv-
ery delay but for the number of transmissions until successful
delivery occurs as well.
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A. Background

Previous studies on network capacity [9], [10] consider
ad hoc networks with multiple pairs of users who want to
communicate with each other. In contrast, we consider mobile
nodes (vehicles) that all want to upload their sensor readings
to fixed APs. Thus, our model is similar to the infostation
model described in [11]. The capacity of the wireless network
is constrained by the limited number of APs and the interfer-
ence of concurrent transmissions when uploading data to the
same AP.1

If, without interference, a vehicle within the range of an AP
can upload data with a bit rate of Θ(B) b/time unit, then the ca-
pacity of the network is Θ(B|AP |), where |AP | is the number
of APs in the monitored area. Let us assume that vehicles can
share this capacity in a fair manner by generating data at similar
rates, encountering APs with a similar frequency, and equally
sharing the wireless medium with other vehicles collocated near
the same AP. If the user has no stringent constraints on the
delivery of their sensor readings, the available throughput per
node is Θ(B|AP |/n), where n is the number of vehicles. This
throughput can be achieved if vehicles carry their data at the
vehicle’s speed until they come within communication range of
an AP, at which point they upload their stored data. Thus, the
transfer capacity of the vehicular network is Θ(B|AP |).

Driver behavior, high speeds, and constraints on mobility
imposed by the road infrastructure have important implications
for the design of routing protocols in VANETs. Epidemic
routing addresses the challenge of sparsely and intermittently
connected mobile networks by allowing nodes to carry their
content and opportunistically forward it to other nodes that they
encounter [12]. Unlike traditional routing protocols for mobile
ad hoc networks (MANETs) [13], epidemic routing achieves
message delivery, even in the case where a connected path from
the source to the destination is rarely available.

Several protocols have been proposed in the literature with
regard to vehicular networks. Chen et al. studied the efficiency
of carry-and-forward algorithms for data dissemination among
vehicles in the context of highways [14]. Briesemeister et al.
[15] proposed an epidemic-style protocol to multicast messages
about an accident to cars with a specific role (e.g., geographic
location, speed, and direction), limiting message propagation to
a certain number of hops. Opportunistic exchange of messages
is also explored in [16] for resource discovery among vehicles.
When vehicles are within the communication range, they eval-
uate the relevance of their resources using a spatiotemporal
function and exchange only the most relevant resources; the
least relevant resources that do not fit in the memory are
purged. The authors in [17] have developed protocols that
disseminate information to a set of target zones rather than
specific destination nodes. Unlike this paper, these studies do
not exploit the statistics and patterns of vehicle mobility to
carefully design their data dissemination protocols. Unlike [18],
we assume no control over vehicle movement, i.e., we cannot
proactively modify vehicle trajectories for communication.

1Note that APs are assumed to be far away from each other and, thus, do not
interfere with each other.

MOVE [19] considers the scenario where location-aware mo-
bile nodes attempt to deliver information to a stationary destina-
tion whose position is globally known, unlike our model’s APs.
Unlike our work, the approach relies on the relative velocity
of a node and its neighbors to make forwarding decisions and
assumes that a node will maintain its heading until it reaches
the destination.

MDDV [20] aims at routing information to receivers that
have expressed an interest for it. The road network is abstracted
as a directed graph, and weights are assigned to each edge of the
graph, which depends on the type of road that it represents. The
forwarding trajectory of a message is predecided, whereas in
this paper, we allow intermediate nodes to modify and improve
the message trajectory.

Zhao and Cao [21] make very similar assumptions to ours,
because they assume knowledge of traffic statistics on different
road segments, and they design vehicle-assisted data delivery
(VADD) protocols, taking into account traffic patterns over
a predefined road layout. However, their goal is to identify
lowest delay delivery paths, whereas our goal is to deliver
packets within a user-specified delay threshold over minimum-
cost paths.

Due to space limitations, we have mainly focused on routing
techniques for vehicular networks. This paper is clearly related
to a large body of research on routing for sensor networks, an
overview of which is provided in [22].

B. Algorithms

We propose the following two novel routing algorithms for
VANETs: 1) D-Greedy and 2) D-MinCost. The goal of our
algorithms is to exploit a user-specified delay threshold to save
communication while delivering messages from vehicles to an
AP. Both algorithms assume that vehicles are equipped with a
digital street map of the area, which is abstracted as a direct
graph, as discussed in detail in Section II. This map is loaded
once when a vehicle is within the range of an AP, and it very
infrequently changes thereafter. Hence, the communication cost
of updating the map is considered negligible. The first proposed
algorithm (D-Greedy) exploits local traffic conditions, i.e.,
information about the speed and density of cars at the road
segment that it currently traverses. This algorithm is suitable
for scenarios where vehicles are not aware of traffic conditions
on every road of the city but can nevertheless sense traffic
conditions in their vicinity. The second algorithm (D-MinCost)
assumes knowledge of global traffic conditions, i.e., statistical
information about the speed and density of cars on every road
segment of the city. Note that the proposed algorithms do not
assume any knowledge of the vehicles’ planned trajectories.

Both algorithms attempt to reduce the total number of mes-
sage transmissions needed to forward a message to an AP
within the message-specific delay threshold. To do so, they
proactively alternate between the following two forwarding
strategies.

1) MF refers to the aggressive forwarding of messages to
vehicles that are better positioned to deliver them to
an AP.
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2) DM refers to buffering messages in the local memory and
carrying these messages at the vehicle’s speed.

The novelty of our proposed algorithms lies in their careful
alternation between the MF and DM strategies to achieve a
good tradeoff between delay and communication cost. This
approach is in stark contrast with the previously proposed
VADD protocols [21], which aim at minimizing message delay
and thus always prefer MF to DM when the former approach
is possible. An additional difference from existing work is that
our algorithms treat each buffered message in a different way,
depending on its remaining delay budget; the same vehicle may
decide to adopt the MF strategy for one message and DM for
another message.

1) D-Greedy: The D-Greedy algorithm defines a forward-
ing strategy that assumes no knowledge of traffic information
beyond node speed, which can locally be derived from the
available location information. Based only on local knowledge,
D-Greedy assumes that the best path to an AP is the shortest
path, i.e., the path that minimizes the sum of the lengths of the
edges on the directed graph G that abstracts the street map. We
use Dijkstra’s algorithm to compute the shortest path between
the current vehicle position and the geographically closest AP.
When multiple APs exist, the algorithm selects the closest path,
i.e., the path on the shortest path beginning at the vehicle’s
position.

Each vehicle maintains a neighbor list by periodically broad-
casting beacons. A beacon message contains the unique vehicle
identifier (id) and the length of the shortest path between the
vehicle’s current location and the location of the closest AP
(distToAP ). distToAP is computed by running a single in-
vocation of Dijkstra on G just before broadcasting a beacon. As
soon as a vehicle senses an event and generates a new message,
the message is assigned a tolerated delay value (TTL) and is
considered useful only if delivered before TTL has elapsed.

a) Greedy Strategy Selection: Vehicles periodically iter-
ate through their buffers and make greedy decisions about the
strategy that will be used for forwarding each message to the
closest AP. The greedy decision depends on the remaining
delay (TTL) until the expiration time of a message and on
its distance to the closest AP (distToAP ). Because global
traffic information is not available, D-Greedy assumes that the
remaining message delay budget can uniformly be distributed
among the edges that compose the shortest path to the AP. As a
result, each edge on the path is allocated a delay budget that is
proportional to its length.

The algorithm periodically monitors the forwarding progress
of each message. If, for a certain message, the delay allocated
to the current edge exceeds the delay of the vehicle that travels
along that edge, the DM strategy is selected for that particular
message. Otherwise, the algorithm assigns the MF strategy to
the message.

More formally, let distToInt be the remaining length, until
the next intersection, of the current street segment e on which
the vehicle travels. distToAP denotes the current distance
from the closest AP on the shortest path, and u is the average
speed of the vehicle, calculated during a constant-size historical
window. D-Greedy computes the available delay budget Del for

Fig. 2. Node a will choose to forward the message to node c, which is the
closest node to the AP among the nodes in range.

Fig. 3. Correlation between node speed and forwarding strategy.

forwarding the message along the current edge up to the next
intersection as follows:

Del = TTL × distToInt

distToAP
.

It subsequently calculates the expected delay if the DM strategy
will be used to carry the message to the next intersection as

DelDM =
distToInt

u
.

If DelDM ≤ Del, then the algorithm opts for the DM strat-
egy, i.e., it refrains from transmitting the message to save
bandwidth while adhering to the delay budget. Otherwise, the
MF strategy is chosen. In this case, the message is forwarded to
the neighboring vehicle in range that is closest to the AP (see
Fig. 2), and it is deleted from the node’s buffer.

There are two extreme cases in which a vehicle does not
apply the selected forwarding strategy for the message. When
there is no better positioned neighbor node to forward the
message than the current node, messages that were originally
assigned to use the MF strategy switch to DM. Similarly, if the
carrying vehicle moves away from the closest AP, messages that
were originally assigned to use the DM strategy switch to the
MF strategy.

Fig. 3 shows the strategy selection of D-Greedy in action.
Observe that, when the message is carried by a vehicle with
high speed, it is propagated with the DM strategy, whereas
when a vehicle with low speed carries the message, it is
propagated with the MF strategy. DM is allowed at lower speeds
during the early lifetime of a message, because the algorithm
overestimates the delay allocated at each edge, because it
assumes that the message will follow the shortest path to the
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Fig. 4. Replacing edge (d, a) in G by two sibling edges, one edge per strategy.

AP. As the message progresses through the network, the delay
budget tightens, and only high-speed carriers are allowed to
perform DM.

To summarize, D-Greedy is an algorithm that locally runs on
each vehicle and periodically decides the fate of each message
in the vehicle’s buffer, i.e., whether to wirelessly forward it to
another vehicle or to continue to locally carry it at the vehicle’s
speed. The decision for each message is based on a simple
calculation (multiplication by a constant and comparison with
a constant). Thus, D-Greedy takes linear time and space in the
number of messages.

2) D-MinCost: Our second proposed algorithm leverages
the knowledge of global traffic statistics, i.e., estimated values
of average vehicle speed u and density d for all edges of
the street graph G. Based on this information, D-MinCost
computes bandwidth-efficient delay-constrained paths for every
message in the node’s buffer.

a) Graph Extension: Recall that, in the graph that ab-
stracts the street map, edges represent road segments and ver-
tices represent road intersections. We would like to annotate
each edge with the following two metrics: 1) cost C, which
represents the number of message transmissions along the edge,
and 2) delay Del, which denotes the time required to forward a
message along the edge.

However, the cost and delay of forwarding a message along
an edge depends on whether we use the DM or the MF
strategy. To solve this case, we convert the original directed
graph G(V,E) that represents the street map to a new graph
G′(V,E ′), which contains the same set of vertices and twice as
many edges. For each directed edge e ∈ G that connects two
vertices, we create a new sibling edge e′ ∈ G that connects the
same two vertices. The original edge e corresponds to a road
segment when the DM strategy is utilized, whereas edge e′

corresponds to the same road segment when the MF strategy
is used. Consider, for example, the graph in Fig. 4, where the
directed edge (d, a) in the original graph G is replaced by two
sibling edges in the extended graph G′: one for each strategy.
Edges (c, b), (a, b), and (b, d) will each be replaced by two
sibling edges in the same manner.

Let us now consider how we can annotate the edges of the
extended graph G′ with the following two metrics: 1) cost C
and 2) delay Del.

For edges associated with the DM strategy, we have

DelDM =
ℓ

u
, CDM = 1

where ℓ denotes the length of the edge, and u is the average
vehicle speed along that edge. We fix the communication cost
of the DM strategy to one message transmission, regardless of
the segment length ℓ. The reason is simple: the vehicle carries
the message along the entire road segment and, in the worst
case, transmits it only once upon reaching the intersection.

For edges associated with the MF strategy, we must first
check whether multihop (MH) is feasible on the road segment.
A necessary condition is that ℓ > R and d ≥ (1/R), where d is
the average vehicle density for the edge in question. However,
this condition is not sufficient, and the higher the average
vehicle density and the communication range, the higher the
probability of MH connectivity. For simplicity, we only check
the necessary condition (ℓ > R and d ≥ (1/R)), and if true,
we create a MH edge and label it with the following cost and
delay2:

CMH =
ℓ

R
, DelMH = CMH × q

where q denotes the time required for the node to check its
neighbor list and identify the best next hop.

After annotating the edges of the extended graph G′ with
their corresponding delays and costs, the next step is to choose
the minimum-cost path such that the total delay of the path does
not exceed the message delay budget. By doing so, we will
have selected not only the sequence of edges through which
the message should be forwarded but also the strategy that
vehicles must adopt at each edge for the particular message. The
delay-constrained least cost routing problem is known to be
NP-complete [23], and various heuristics have been proposed
in the literature. D-MinCost utilizes one such heuristic, i.e.,
the delay-scaling algorithm (DSA) [24], to efficiently compute
delay-constrained least cost paths from the vehicle’s location to
all APs in the network. By computing these least cost paths, we
can identify the following factors:

• the AP that can be reached with the least cost;
• the exact minimum-cost path to that AP;
• the strategy that should be followed at each edge of the

path to adhere to the message’s remaining delay budget.
D-MinCost maintains a neighbor list at each node through

periodic beacon broadcasts, similar to D-Greedy. When a mes-
sage p is generated at the node, the algorithm applies the DSA
heuristic on the extended graph G′ for message p with delay
budget TTL. The next intersection I is used as the location of
the message. Based on the paths returned by DSA(I, TTL),
D-MinCost selects the minimum-cost path that leads to an AP
and encodes this path in the message header. If the first edge
of the path suggests the use of DM, the vehicle carries the
message until the next intersection I . Otherwise, the message
is forwarded to the neighboring vehicle in range that is closest
to I . Upon successful message reception, the neighbor returns
an acknowledgment so that the sending node can remove the
message from its buffer. Subsequently, the new message carrier
will obey the strategy encoded in the message header together

2In future work, we will consider a probabilistic model for measuring the
cost and delay of a MH edge, taking into account the vehicle density and
communication range.
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Fig. 5. D-MinCost considers all outgoing edges and selects the feasible path (path delay <= TTL) with the minimum communication cost.

with the suggested path. The message path will be recomputed
at the next intersection by its carrier only if it is not feasible to
follow the suggested edge and its associated strategy. This case
can happen if, for example, there are no available vehicles on
the recommended edge.3

In this case, the edge is removed from graph G′, and the
DSA heuristic is reinvoked on the resulting graph to compute
an alternative minimum-cost path.

Consider the example in Fig. 5. A node has arrived at
intersection a, carrying a message whose remaining TTL value
is equal to 7. The table lists all possible paths from a to the AP
g with all strategy selection combinations: either DM or MF.
Assuming that a vehicle is available at every outgoing edge
of intersection a, our previous algorithm, which uses greedy
forwarding, will only consider propagating over edge (a, g),
because this edge is on the shortest path. It would then detect
that DM would incur a higher delay than TTL allows and would
have opted for MF over (a, g), spending four transmissions.
D-MinCost, on the other hand, will try to find the cheapest path
that satisfies the delay requirement. It will consider all outgoing
edges and eventually choose to propagate over (a, b) using DM
and, subsequently, over (b, g) using DM as well. This case will
incur a communication cost of two transmissions, which is less
than D-Greedy, and a delay of 7, which is equal to the TTL
value.

C. Evaluation

1) Node Mobility: It is widely accepted in the literature
that the results of ad hoc network protocol studies are heavily
influenced by the mobility model utilized [25]. The random-
waypoint mobility model is among the most commonly used
approaches, which, however, fails to capture the dynamics of
the urban vehicular scenarios for which our protocols are des-
tined. In this paper, we base our evaluation on realistic vehicular
traces from the city of Zurich, Switzerland. The traces have
been produced by a multiagent traffic simulator that simulates
public and private traffic over a real map based on actual travel
plans of individuals [26]. The size of the area is 250 km ×
260 km, with 260 000 vehicles involved.

2) Experimental Setup: For our evaluation, we have ex-
tracted a rectangular street area of size 20 km × 10 km,
which covers the center of the city and surrounding areas
and contains around 30 000 distinct vehicle trajectories during

3Note that edges are directed; when a vehicle advertises its edge in the beacon
message, it also implies its direction.

Fig. 6. Snapshot of the map during the simulation. Road segments have been
classified based on the average vehicle speed, and vehicles have been classified
according to their actual speed.

a 30-min interval in the morning rush hour. We analyzed
the trajectories to identify the four busiest intersections and
placed one stationary AP on each. We evaluate our protocols
using a discrete event simulation environment developed with
vehicular networks in mind in Java. Our simulator supports
openstreetmap [27] geographic data; however, we have opted
to extract the area map from the vehicular traces in an attempt
to eliminate unused streets and alleys from the resulting graph
and render our simulations more tractable. We simulate 30 min
of traffic and set the neighbor discovery beacon period at 5 s.
We have selected the simulation interval to coincide with the
morning rush hour in the traces. Fig. 6 shows a simulation
snapshot where vehicle density and speed on different road
segments of the map can be observed.

All simulations run during the same 30-min interval that
starts at t0. For the evaluation of the D-MinCost algorithm, we
preload the street graph with traffic statistics computed during
the 30-min interval, ending at t0. One hundred messages are
generated during the first 50 s of the simulation and are ran-
domly distributed among the participating vehicles. Our results
are averaged over 30 iterations. Table I lists the parameters of
our experiments.

3) Performance Metrics: We compare D-Greedy and
D-MinCost with the Epidemic protocol, as defined in [12],
and the MinDelay protocol, which is inspired by the VADD
protocols [21]. By exploiting all possible vehicle contacts,
Epidemic provides an upper bound for message delivery ratio

Lai yongxuan
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TABLE I
SIMULATION PARAMETERS

and a lower bound for delivery delay under our infinite buffer
assumption. We cannot do better than Epidemic in terms of
delivery ratio and delay for our scenario. MinDelay tries to
identify the minimum-delay path on the extended graph G′

described in Section V-B2. It makes aggressive use of the
MF strategy, because its goal is to minimize delay. However,
unlike the Epidemic protocol, it typically forwards messages
through a single minimum-delay path and thus incurs lower
communication cost.

For each algorithm, we measure the following metrics.
1) Message delivery ratio: The percentage of messages that

have reached an AP and do not exceed the delay require-
ment λ.

2) Average message delivery delay: The time between mes-
sage generation and delivery at an AP, averaged over all
delivered messages. Again, only messages that do not
exceed λ are considered.

3) Bytes transmitted: The total number of bytes transmitted
by the algorithm. This value is used as an indication of
bandwidth utilization.

D. Simulation Results

1) Delivery Ratio: In this section, we compare the delivery
ratio of D-Greedy and D-MinCost with Epidemic and MinDe-
lay. We measure the fraction of messages that have reached an
AP without exceeding the delay threshold λ. Suppose that a
message was generated at timestamp tg and delivered at td. We
consider the message that was successfully delivered only when
td − tg < λ.

Fig. 7 shows the message delivery ratio for different car den-
sities. λ is set at 1200 s. D-Greedy, D-MinCost, and MinDelay
exhibit very similar behavior, never falling behind Epidemic’s
optimal values by more than 10%. Naturally, we expect the
delivery ratio to increase for all algorithms as we increase the
vehicle density, because more contacts between vehicles are
exploited.

Fig. 8 shows the message delivery ratio for different values
of the delay threshold. For low delay thresholds, only packets
that are close enough to an AP will be delivered, leading to
lower delivery ratio values. Our schemes are shown to perform
very well, within 9% of Epidemic, across the different delay
thresholds. MinDelay behaves similarly. Fig. 8 confirms that the
behavior that we observed in Fig. 7 is consistent for different
values of λ.

2) Transmitted Bytes: In this section, we measure the total
number of bytes transmitted by each algorithm. This metric

Fig. 7. Message delivery ratio varying the number of cars (λ = 1200 s).

Fig. 8. Message delivery ratio varying λ (number of cars = 900).

Fig. 9. Total number of bytes sent for different car densities (λ = 1200 s).

reflects the bandwidth utilization of each scheme. The total
number of bytes is inclusive of any overhead incurred by control
messages (e.g. beacons and acknowledgments) and protocol-
specific headers.

Figs. 9 and 10 show that our algorithms outperform MinDe-
lay in terms of bandwidth usage. A multiple-copy scheme such
as Epidemic is not expected to perform well in this case. In fact,
it transmits at least an order of magnitude more bytes than the
rest of the schemes; therefore, we have focused on the lower
portion of the graphs to better distinguish between MinDelay,
D-Greedy, and D-MinCost.
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Fig. 10. Total number of bytes sent for different values of
λ (number of cars = 900).

Fig. 11. Average delivery delay (DDD) for different values of
λ (number of cars = 900).

As we increase the number of cars in Fig. 9, we observe
that the rate of increase of bandwidth utilization for both
D-Greedy and D-MinCost is significantly lower than MinDelay.
D-Greedy transmits up to 45% less bytes than MinDelay,
whereas D-MinCost is even more conservative in its transmis-
sions, outperforming MinDelay by up to 75%. This behavior
is consistent across different delay thresholds (see Fig. 10).
D-MinCost is the top performer among all algorithms, which
is not a surprise, because we expect it to more frequently utilize
DM than D-Greedy, resulting in fewer transmissions.

By carefully alternating between the MF and DM strategies,
our algorithms introduce very significant communication sav-
ings over the MinDelay scheme, which gracefully scale with
car density, while, at the same time, maintaining the delivery
ratio close to optimal levels.

3) Message Delay: Fig. 11 shows the effect of different
delay thresholds on the average message delivery delay. It is
computed as the average of the delivery delays of all suc-
cessfully delivered messages within the delay threshold λ.
Epidemic always finds the minimum delay path, because it
takes advantage of every contact opportunity and forwards the
message over all possible paths.

We observe that D-Greedy and D-MinCost, on the average,
deliver messages later than MinDelay, particularly for large val-

Fig. 12. CDF of DDD (900 cars, λ = 1500).

ues of λ. This case is attributed to the fact that our algorithms try
to exhaust the available delay threshold by delivering messages
as late as possible. By exploiting traffic statistics, D-MinCost
is more effective than D-Greedy in doing so: It maintains a
high delivery ratio (as shown in Fig. 8) but delivers messages
later than the other schemes. This case is because D-MinCost
will always follow the minimum-cost path to the AP that
involves more DM, whereas D-Greedy will follow the shortest
path, ignoring possibly cheaper (and more time-consuming)
alternatives. In general, D-MinCost’s paths are more likely to
utilize the DM Strategy than D-Greedy’s paths. MinDelay does
not proactively utilize DM but merely when there is no other
alternative.

For each of the simulated routing schemes, we have plotted
the cumulative density function (cdf) of the message delivery
delay in Fig. 12. The y-axis represents the fraction of delivered
messages over all generated messages, and λ is set at 1500 s.
This figure confirms that D-MinCost better exploits the delay
threshold than any other algorithm: it delivers almost half the
messages in the interval [1200, 1500] s. D-Greedy delivers 29%
of the messages during the same interval—a 9% improvement
over MinDelay.

4) Effect of λ: D-Greedy and D-MinCost do not aggres-
sively use the MF strategy similar to MinDelay; instead, they
gracefully alternate between the MF and DM strategies, aiming
at exhausting the message delay threshold and minimizing the
communication cost, effectively trading allowable delay for
bandwidth. To show the effect of the delay threshold λ on our
algorithms, we run two simulations with different λ values, i.e.,
600 and 1800, where we generate ten messages and examine
the strategy followed by each message throughout its journey
toward the AP.

Figs. 13 and 14 show, for D-Greedy, the strategy chosen per
message during the simulation as a function of the distance
covered by the message. In Fig. 13, where the delay threshold
is set at 600 s, we observe that messages that need to travel
long distances to an AP make aggressive use of the MF mode,
whereas messages closer to an AP alternate between the two
modes. A similar trend is observed in Fig. 14, where the delay
threshold is set to 1800 s. Comparing the two figures verifies
that the DM strategy is much more frequently used when
messages have a high delay threshold.
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Fig. 13. Strategy chosen for low λ = 600 s.

Fig. 14. Strategy chosen for high λ = 1800 s.

Fig. 15. Total number of bytes sent for different communication ranges (λ =
1200 s, number of cars = 900).

5) Effect of Communication Range: Figs. 15 and 16 show
the effect of varying the communication range on the achieved
delivery ratio and communication cost of the proposed algo-
rithms. We observe that both algorithms achieve very similar
delivery ratios under different communication range scenarios
and exhibit similar sensitivity to these approaches, with the
delivery ratios dropping when the range is reduced. This case is
expected, because the list of discovered neighbors will signifi-
cantly be shorter for small communication ranges. Although the
delivery ratios do not drop to unacceptable levels, this condition
comes at a very high communication cost. D-MinCost main-

Fig. 16. Delivery ratio for different communication ranges (λ = 1200 s,
number of cars = 900).

TABLE II
SIMULATION PARAMETERS

tains the lead in communication cost performance throughout
the different range scenarios.

E. DDD Analysis

We have chosen to utilize D-Greedy as the data delivery
algorithm for the remainder of our analysis to render our
simulations more tractable. For our subsequent analysis, we
have doubled the duration of our simulations, increasing it to
a 60-min interval during the morning rush hour. We have also
uniformly distributed 150 stationary APs on road intersections
in the area. All other simulation parameters remain the same
(see Table II).

Recall that the delay budget that is initially available to
a message is an algorithm parameter that the user can vary,
called the delay threshold (λ). D-Greedy attempts to deliver
the message to the closest AP within the user-defined delay
threshold λ. In fact, it endeavors to deliver as close to λ as
possible by aggressively utilizing MF for low values of λ and
using DM when λ is high.

Whether D-Greedy can achieve the λ delay target inevitably
depends on the underlying network topology; it may be im-
possible for messages generated far from an AP to be deliv-
ered within certain low λ thresholds, whereas messages that
originate near an AP might be delivered much sooner than λ,
even if DM is used for the duration of the routing phase. In
our scenario, we would like to know the actual delay DDD
incurred by the routing algorithm. Knowing DDD allows us to
allocate the remaining data freshness budget to the DAP .

We have examined the effect of the algorithm parameter λ
(delay threshold) on the actual delivery delay (DDD) incurred
for different roads. Fig. 17 shows the effect of λ on the
maximum delivery delay incurred for a road. We show 95%
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Fig. 17. Effect of the D-Greedy parameter λ on the actual DDD.

confidence intervals as a result of 30 iterations, each with a
different set of participating vehicles that are randomly chosen
from our traces. We observed that, for every road, there is a
lower bound DDDmin on how fast the data can be propagated
and an upper bound DDDmax above which the routing algo-
rithm cannot further delay messages to save extra bandwidth.
We also observed that, for DDDmin ≤ DDD ≤ DDDmax,
D-Greedy always achieves the λ target, resulting in a linear
relationship between λ, i.e., the algorithm parameter, and DDD,
i.e., the resulting delay. By storing DDDmin and DDDmax,
as well as the slope a and intercept b of the least squares fit
between the two points, we now can predict not only the range
of allowable DDD values per road but the corresponding λ
parameter of the D-Greedy algorithm that results in the desired
DDD as well. To aid our optimizations in the next section, we
preload the street map with the values DDDmin and DDDmax,
as well as the slope a and intercept b for each road.

VI. JOINT OPTIMIZATION

A user query with a data freshness requirement of F provides
an upper bound for the worst case freshness allowed by the
system. Based on Fig. 1, recall that the following condition
needs to be satisfied:

DDD + DAP ≤ F. (1)

In Sections IV-B and V-E, we have discussed how increasing
the value of either DDD or DAP will result in less message
transmissions in the network. Thus, to keep the number of
message transmissions to a minimum, we need to maintain
the sum DDD + DAP as close to F as possible to exhaust the
available freshness budget. The naive approach for splitting the
budget between DDD and DAP would be to select DDDmin

for the DDD, i.e., route data as fast as possible, and utilize
the full remaining budget (F − DDDmin) to slow down data
acquisition. We refer to this basic approach as rapid delivery. In
other words, rapid delivery aims at reducing the rate of traffic
information generation as much as possible.

This basic approach does not necessarily yield optimal com-
munication savings. We investigate whether we can outperform
rapid delivery by jointly optimizing the data acquisition and
data delivery tasks as follows. In Section VI-A, we examine
how we can divide the freshness budget into DDD and DAP in
search for the optimal balance that minimizes communication.

Fig. 18. Communication cost across the valid DDD range for a single road.

Fig. 19. (DDD, DAP ) pairs for optimal communication savings and a
single road.

We measure how this balance is affected by different freshness
budgets and by road proximity to the AP. In Section VI-B, we
compare the communication savings of rapid delivery to our
joint optimization approach.

A. Algorithm Tuning

In Section V-E, we have noticed that the actual DDD DDD
incurred by the routing algorithm lies within a certain interval
for each road [DDDmin,DDDmax]. We measure the com-
munication cost incurred, in the form of transmitted bytes,
for DDD values within this interval and their corresponding
DAP values, where DAP = F − DDD. Each DDD value
corresponds to a λ value used to set up the routing algorithm
(Section V-E), whereas DAP values control the data acquisi-
tion rate for each road (see Section IV-B).

Fig. 18 shows the bytes transmitted for different values of
DDD for a single road when the freshness requirement F is
set to 900 s. We observe that, for DDD ∼= 500, the bandwidth
utilization is minimized for this road. This case essentially
means that, for a specific freshness budget, it is worth allocating
part of the budget to slow down data delivery rather than to use
it all to slow down data acquisition. Observe the square point on
the graph that corresponds to DDDmin and, thus, to the rapid
delivery algorithm: By jointly optimizing, we achieved a 30%
reduction in communication cost compared to rapid delivery
for this road.

For the same road, Fig. 19 shows the optimal DDD value as
we vary the freshness budget. The corresponding optimal DAP
value that results from the choice of DDD is also shown. A
comparison of the DDD and DAP slopes reveals that, as the
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Fig. 20. Optimal (DDD, DAP ) pairs as a function of road distance from
the AP.

Fig. 21. Worst case freshness of traffic data for a road 840 m away from
the AP.

freshness budget increases, we should allocate proportionally
more delay to data acquisition than data delivery for optimal
behavior. Observe that, after the 2000-s mark, DDD ceases to
increase, because DDDmax has been reached. From that point
onward, the extra freshness budget is exclusively absorbed by
DAP .

One important variable that affects the behavior of the rout-
ing algorithm is the road distance from the closest AP. For
roads that are farther away, messages need to travel longer
distances and over more hops to reach the AP. Fig. 20 shows
the optimal (DDD,DAP ) pairs for roads at different distances
from the AP. DDDmin is also shown here, which corresponds
to the delivery delay that rapid delivery incurs. There are
several conclusions that can be derived from Fig. 20. The
optimal (DDD,DAP ) pairs are almost linearly dependent on
distance, which provides us with a mechanism for assigning
(DDD,DAP ) pairs to any road based solely on its distance
from the AP. One interesting observation is that, for roads closer
to the AP, the freshness budget should mostly be allocated to
data acquisition. For roads farther from the AP, the freshness
budget should increasingly be allocated to data delivery. Note
that, for roads farther away from the AP, the optimal delay for
data delivery (DDD) is significantly larger than the minimum
possible delay for data delivery (DDDmin).

Fig. 21 shows the worst case freshness achieved for a specific
road when using our optimization scheme. For different values
of F , we measured the worst case freshness, i.e., the message
that a user would receive if he/she issued a query just before
the arrival of a new message at the AP. The shaded area
represents the freshness budget F . Our scheme performs as

Fig. 22. Transmitted bytes (single road) as a function of F .

Fig. 23. Transmitted bytes for roads at various distances from the AP.

desired, because it comes very close to exhausting the available
freshness budget.

B. Benefits

Figs. 22 and 23 depict the benefits of the joint optimization.
In Fig. 22, we observe increasing benefits of our approach
over the approach that utilizes rapid delivery as we relax
the freshness requirement, which reaches up to 38%. Fig. 23
outlines the benefits as a function of road distance from the AP.
As anticipated, following our observations in Fig. 20, joint op-
timization saves more communication cost compared to rapid
delivery for roads that are farther away from the AP, reaching up
to 42% for the farthest roads. Our approach is not very effective
for roads close to the AP. We could thus omit optimization for
roads that surround the AP without significantly impacting the
number of bytes transmitted.

C. Effect of Traffic Volume

To perform our analysis and joint optimization, we have
selected the simulation interval to coincide with the morning
rush hour in the traces. Our results are based on the early
morning traffic patterns that occur between 7 A.M. and 8 A.M.
Rush hour generally results in high car densities on the urban
street map.

The traffic traces that we have available have been produced
from a traffic simulator that generates routes based on actual
travel plans of individuals. The simulator seems to mostly
consider commuter travel plans, leaving a gap between 10 A.M.
and 2 P.M. Fig. 24 shows how the average traffic density varies
during the day for a single road from our traces. To examine
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Fig. 24. Average vehicle density for a single road during a 24-h period.

Fig. 25. Effect of the D-Greedy parameter λ on the actual DDD in the sparse
network.

how our optimization is affected by lower traffic densities, we
utilize the interval 14:30–15:30 for our simulations. During this
interval, the average traffic density observed is 40% lower than
in our previous simulations.

1) Effect on the Routing Algorithm: It is reasonable to
expect that lower traffic volumes will introduce extra delay
during the routing phase. Fig. 25 shows that sparse traffic has a
significant impact on the routing delay. Compared with Fig. 17,
based on our rush-hour results, we observe that, for the same
road, DDDmin has increased from 450 s to about 750 s. This
case is for a road that is roughly 800 m away from the AP. As
a result, we cannot expect better freshness results than 750 s
for that particular road. λ has a similar effect on the behavior
of the routing algorithm, but it is now more erratic. Our results
show higher variation, which we attribute to the fact that there
are not enough cars for the routing algorithm to route over
similar paths at every iteration. DDDmax can be as low as
during the rush hour, but it can also reach much higher values
in this case. We utilize the maximum value of DDDmax for
mapping λ to DDD. For example, for this particular road, we set
DDDmax to 1350 s compared with about 900 s in the rush-hour
scenario.

2) Effect on the Data Acquisition Algorithm: Recall that, in
the data acquisition phase, we would like our mobile sensor
network to provide an output similar to a stationary sensor net-
work, i.e., one traffic message per road every DAP time units.
To achieve this goal, we task each vehicle to transmit a traffic
message with a certain probability, i.e., Pg = (fg/q) ⇒ Pg =
1/(DAP · u · d), at the road segment midpoint, accounting
for the different speed and density conditions that are directly

Fig. 26. Worst-case freshness of traffic data for a road 840 m away from the
AP in the sparse network. The shaded area represents the freshness budget F .

Fig. 27. Optimal (DDD, DAP ) pairs as a function of road distance from
the AP.

observable by the vehicle’s sensors. However, the fact that we
consider low vehicle densities in this data set, i.e., low values of
d, could mean that, to maintain the DAP requirement, Pg takes
values higher than 1 for some roads. A Pg value greater than 1
effectively means that each vehicle would need to transmit more
than one message to satisfy the DAP requirement, or in other
words, there are not enough vehicles on the road to produce
traffic messages as often as required.

As shown in Fig. 26, this fact impacts the received message
freshness when the freshness budget is low, because this case is
when DDD = DDDmin and short DAP intervals are required
to achieve the freshness target. As the freshness budget relaxes
and part of it is allocated to the DAP, freshness values again
begin to fall within range.

3) Effect on the Optimization Results: Fig. 27 shows the
optimal DDD value as we vary the freshness budget. The
corresponding optimal DAP that results from the choice of
DDD is also shown. Our conclusion based on Fig. 19 that,
as the freshness budget increases, we should proportionally
allocate more delay to data acquisition than data delivery, still
holds and is even more pronounced. Data delivery has less
effect on the number of transmissions when the network is
sparse. This condition can be justified by the fact that, in a
sparse network, the data delivery algorithm does not have as
several opportunities to perform MF, and thus, relaxing the
delay requirement has a less significant impact on the number
of transmissions. To verify our hypothesis, we measure the
average number of hops traveled by messages generated at a
specific road until they reach the AP for both the sparse and
dense networks (see Fig. 28).
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Fig. 28. Average number of hops traveled by messages generated at a specific
road until they reach a gateway for both the sparse and dense networks.

Fig. 29. Transmitted bytes (single road) as a function of F in the sparse
network.

The following interesting observations can be made after
examining Fig. 28.

• In the sparse network, the number of hops starts at a
lower value, because there are not as several opportunities
for MH.

• The confidence intervals are much tighter in the dense
network, where the routing algorithm is likely to use
similar paths, because there is a higher probability that a
vehicle will be available as the next hop on the preferred
path.

• In the sparse network, the effect of relaxing the delay
threshold λ is not as pronounced, which verifies our hy-
pothesis.

• In the sparse network, we observe that the number of hops
drops lower than in the dense-network case for large λ
values. It would appear that this case represents energy
savings that the algorithm should also achieve in the dense
network. However, D-Greedy uses shortest path routing to
reach the AP. In a sparse network, a message might have
to veer off the shortest path during DM, because next-
hop vehicles on the shortest path are less likely to exist,
causing it travel on edges outside the preferred path for
larger periods of time.

Fig. 29 shows the benefits of our optimization for the sparse-
network scenario. As shown in Fig. 22, we observe increasing
benefits of our approach as we increase the freshness budget.
However, in this case, our benefits reach up to 27% compared
with 42% during the rush hour. Because the DDD does not
play such a significant role in this case, our optimization is

closer to the rapid-delivery approach results, where the entire
freshness budget is allocated to the DAP .

VII. CONCLUSION

In this paper, we have defined the problem of minimizing the
communication incurred by traffic-monitoring systems while
providing deterministic guarantees of information freshness.
We have proposed algorithms that will be utilized in both key
processes associated with monitoring traffic, data acquisition,
and data delivery.

For data delivery, we have proposed the following two
novel packet-forwarding schemes for vehicular network scenar-
ios, which route messages toward fixed infrastructure nodes:
1) D-Greedy and 2) D-MinCost. Our algorithms leverage
locally available information about traffic and global traffic
statistics to reach forwarding strategy decisions that minimize
communication and, at the same time, adhere to a delay thresh-
old set by the application for each packet. We have conducted
a thorough experimental evaluation of our schemes, utilizing
realistic vehicular traces on a real city map. We have compared
them with the Epidemic scheme, which achieves optimal delay
and delivery ratio under our scenario, and with MinDelay, a
greedy delay-minimizing scheme. It has been shown that our
schemes significantly outperform the competing algorithms in
terms of communication cost while maintaining a reasonably
high packet delivery ratio and low delivery delay and are thus
very well suited for our scenario.

We have subsequently proposed a framework that jointly
optimizes the data acquisition and data delivery stages in the
traffic-monitoring system. Our results have shown that the
optimal allocation of freshness budget to these processes de-
pends on the freshness budget itself and the distance of the
monitored road from the closest gateway. Roads farther away
from the gateway are the roads that benefit the most from
our optimization. By striking an optimal balance between data
acquisition and DDDs, we obtain communication savings of up
to 42% compared to the basic approach. We have shown that
our optimizations yield very good results in both sparse and
dense vehicular traffic, with the benefits of our approach being
more pronounced in dense networks. Joint optimization relies
on the computation of the optimal (DDD,DAP ) pairs, which
can be calculated during an initial system configuration phase
and used thereafter during normal operations. If an anomaly,
e.g., a traffic accident, disrupts joint optimization, this condition
can be detected at the AP side, and a message broadcast can
switch the protocol used to rapid delivery. As our future work,
we aim at investigating the real-time adaptive calculation of
(DDD,DAP ) pairs so that the system remains optimized
during nonrecurring traffic events.

In this paper, we have considered a busy urban scenario,
where the wireless medium is expected to be congested
throughout. In our future work, we plan to extend our al-
gorithms for operation in scenarios with high variability of
network conditions. In areas where the network bandwidth is
underutilized, MF can aggressively be utilized, reserving delay
budget for resorting to the DM strategy in more congested
parts of the network. We also plan to embed more sophisticated
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propagation models in our simulations and study how the
behavior of our algorithms is effected.

This paper has proposed algorithms in the context of traffic-
monitoring sensor networks; however, their applicability is not
limited to traffic-monitoring systems. The routing techniques
proposed could be used to deliver other types of content over
a vehicular network, e.g., atmospheric pollution or noise level
data. However, a careful study of these techniques must be
performed within the context of each new application to investi-
gate their suitability and tune them to meet specific application
needs.
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